NPS OR-91-031 NAVAL POSTGRADUATE SCHOOL Monterey, California

MORE ON CUMULATIVE SEARCH EVASION GAMES

Alan R. Washburn

October 1991

Approved for public release; distribution is unlimited. Prepared for: Naval Postgraduate School Monterey, CA

FedDocs D 208.14/2 NPS-OR-91-031

AVAL POST FRADUATE SCHOOL N AREY ALIFORNIA 93948

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Superintendent

Harrison Shull Provost

This report was prepared in conjunction with research funded under the Naval Postgraduate School Research Council Research Program.

This report was prepared by:

1.H.JCR.

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL

	UNCLASSIFIED	MONTEREY CA 93943-5101						
E	CURITY CLASSIFICATION OF THIS PAGE							
	REPORT DOCUMENTAT	FION PAGE Form Approved OMB No. 0704-0188						
a.	REPORT SECURITY CLASSIFICATION UNCLASSIFIED	1b. RESTRICTIVE MARKINGS						
	SECURITY CLASSIFICATION AUTHORITY DECLASSIFICATION/DOWNGRADING SCHEDULE	3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.						
	PERFORMING ORGANIZATION REPORT NUMBER(S) NPS OR-91-031	5. MONITORING ORGANIZATION REPORT NUMBER(S)						
a.	NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBO Naval Postgraduate School OR	7a. NAME OF MONITORING ORGANIZATION O&MN, Direct Funding						
c.	ADDRESS (City, State, and ZIP Code) Monterey, CA 93943	7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5006						
	NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBC ORGANIZATION (If applicable) Naval Postgraduate School (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER						
IC.	ADDRESS (City, State, and ZIP Code)	10. SOURCE OF FUNDING NUMBERS						
	Monterey, CA 93943	PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO.						
1.	TITLE (Include Security Classification) More on Cumulative Search Evasion Games							
2.	PERSONAL AUTHOR(S) Alan R. Washburn							
3-	TYPE OF BEPORT	14 DATE OF REPORT (Year month day) 15 PAGE COUNT						

3	a. TYPE OF F		13b. TIME C		14. DATE OF REPORT (Year, month day)	15. PAGE COUNT
	Techni	ical Repor	t FROM	TO	October, 1991	25
6	. SUPPLEM	ENTARY NOTA	TION			
7.	. (COSATI CODES		18. SUBJECT TERM	AS (Continue on reverse if necessary and ide	entify by block number)
	FIELD	GROUP	SUB-GROUP	Search; evasio	on: game	
				content e rubre	0	

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report generalizes the form of the payoff function so that all track crossings must involve contact. A more computationally efficient form of the one-dimensional game is also given.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		TINGT	CURITY CLASSICIAT	ION
X UNCLASSIFIED/UNLIMITED SAME AS RPT.	DTIC USERS			
2a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (2c. OFFICE SYMBOL
A. Washburn		(408) 646-2		OR/Er
)D Form 1473, JUN 86		ns are obsolete.	SECURITY CLASSIE	FICATION OF THIS PAGE
	S/N 0102-L	F-014-6603	UNCLA	ASSIFIED
		i		

MORE ON CUMULATIVE SEARCH EVASION GAMES

1. INTRODUCTION

Eagle and Washburn (1990) introduced Cumulative Search Evasion Games (CSEGs) as two-person zero sum games where the cumulative payoff over T time periods is $\sum_{t=1}^{T} A(x_t, y_t, t)$, x_t and y_t being the locations of searcher and evader, respectively, at time t. A path for the searcher is a sequence $x_1, ..., x^T$ where $x_1 \in S_0$ and $x_{t+1} \in S(x_t, t)$ for $t \ge 1$, the sets S_0 and $S(\bullet, \bullet)$ being given, and similarly for the evader except $y_1 \in E_0$ and $y_t \in E(y_t, t)$. All of these sets are nonempty subsets of Cs a given finite set of "cells." A mixed strategy for the searcher is a probability distribution over paths. Let p(x,t) be the corresponding marginal distribution, the probability that the searcher occupies cell x at time t, and let q(y,t) be defined similarly for the evader. Then the expected payoff is $\sum_{t=1}^{T} \sum_{x} \sum_{y} A(x, y, t) p(x, t) q(y, t)$. This observation, together with the observation that the optimization problem for one player when the marginal distribution of the other is given is a shortest or longestpath problem, formed the basis of two solution methods for solving CSEGs: Fictitious Play and Linear Programming (LP). Only the LP method will be discussed here.

One might hope to formulate an LP for the searcher in which the only variables needed to describe the searcher's mixed strategy are p(x,t), since those suffice to express the expected payoff. However, Eagle and Washburn found it necessary to introduce the joint probabilities

u(i, j, t) = probability that the searcher occupies cell *i* at time t-1, and cell *j* at time t,

together with network constraints to the effect that probabilities "flowing" into and out of a cell must balance. The necessity to include these joint probabilities is disappointing, since in large problems there are many more u-variables than p-variables. One of the goals of this paper is to show that the u-variables can be avoided in certain one-dimensional CSEGs. This is the subject of the next section. Using only the p-variables makes it possible to solve larger CSEGs than would otherwise be possible.

The other goal of this paper is to show that the payoff at time t in a CSEG can be generalized to $A(x_{t-1}, x_t, y_{t-1}, y_t, t)$ if the u-variables are retained. The required theorems and LP formulation, together with an example illustrating the value of the generalization, is the subject of Section 3.

2. THE ONE-DIMENSIONAL CSEG

In this section the positions of both parties must at all times be in the set of cells $C = \{1, ..., N\}, N \ge 1$, with transitions from *i* to *j* at *t* being permissible if $i \in C, j \in C$, and $|i-j| \le 1$. These rules define $E(\bullet, \bullet)$ and $S(\bullet, \bullet)$. The payoff function A(i, j, t) is unrestricted.

Suppose for the moment that the searcher's marginal probabilities p(i, t)were known to the evader, in which case any evader path that visits cell j at time t must pay a penalty ("penalty" because the evader is the minimizer) of $\sum_{i \in C} p(i,t)A(i,j,t)$. Let g(j,t) be the minimum possible cumulative payoff from time t onwards, given that the evader occupies cell j at time t. Then, taking $g(\bullet, T + 1) \equiv 0$ for convenience, $g(\bullet, \bullet)$ must satisfy the recursion

$$g(j,t) = \sum_{i \in C} p(i,t) A(i,j,t) + \min_{k \in E(j,t)} g(k,t+1); j \in C, 1 \le t \le T$$
(1)

Since the evader must be in E_0 at time 1, the minimum possible payoff is $\min_{j \in E_0} (j, 1)$, which the pursuer wants to maximize. This leads to the following

Linear Program:

subject to

$$\begin{array}{ll} \max \text{ imize } g_0 \\ g_0 - g(y, 1) \leq 0; \quad j \in E_0 \,, \end{array}$$

$$g(j,t) - \sum_{i \in C} p(i,t) A(i,j,t) - g(k,t+1) \le 0; j \in C, 1 \le t \le T, k \in E(j,t),$$

and some feasibility constraints on $p(\bullet, \bullet)$.

Eagle and Washburn employed the u-variables in expressing the feasibility constraints on $p(\bullet, \bullet)$. The object here is to find a way of expressing those constraints without defining any new variables. First we prove

Theorem 1. In the one-dimensional CSEG, $p(\bullet, \bullet)$ is feasible if the following feasibility constraints hold:

$$\sum_{i \in S_0} p(i,1) = 1$$
(left)
$$\sum_{i=1}^{k} p(i,t+1) - \sum_{i=1}^{k+1} p(i,t) \le 0 \qquad ; 1 \le k \le N; 1 \le t \le T$$
(right)
$$\sum_{i=k+1}^{N} p(i,t+1) - \sum_{i=k}^{N} p(i,t) \le 0 \qquad ; 1 \le k \le N; 1 \le t \le T$$

$$\sum_{i=1}^{N} p(i,t) = 1 \qquad ; 1 \le t \le T$$

$$p(i,t) \ge 0 \qquad ; 1 \le i \le N; 1 \le t \le T$$

Proof: Assume that the feasibility constraints hold, and consider the proposition P_T that there exists a feasible stochastic searcher motion process for which the marginal distributions are $p(\bullet,t)$; $1 \le t \le T$. P_1 is clearly true, since the feasibility constraints in that case require only that the searcher begin in S_0 . If it can be shown that P_T implies P_{T+1} , the theorem will be established by induction. Toward this end, let cells 1, ..., N at time T be "sources" with probability $p_i = p(i, T)$ each, and let the same cells at time T + 1 be "sinks" with probability $q_i = p(i, T + 1)$ each. To establish P_{T+1} , it is sufficient to show that there exist N^2 joint occupancy probabilities u_{ij} such that $\sum_{i=1}^{N} u_{ij} = p_i, \quad \sum_{i=1}^{N} u_{ij} = q_j, \text{ and } u_{ij} = 0 \text{ unless } j \in E(i, t), \text{ the latter constraint}$ reflecting the requirement that transitions beyond neighboring cells are not allowed. In other words, it must be possible to "ship" a unit of probability from sources to sinks, with u_{ii} being the amount shipped from source *i* to sink j. The "left biased" method (LB) below is one constructive method for accomplishing this. LB proceeds through the sources in increasing order, shipping probability to the lowest numbered sink that is not yet satisfied until the source being considered is exhausted, then proceeding to the next source until all N sources have been considered. If LB makes $u_{ii} > 0$ for some *i* and some i < i - 1 (alternatively i > i + 1), we say that a left (alternatively right) difficulty occurs at node *i*. To complete the proof it is required to show that no difficulties of either type can occur as long as the feasibility constraints hold.

Suppose that no difficulties occur in cells 1, ..., k - 1, but that a left difficulty occurs in cell k (necessarily $k \ge 3$, since left difficulties are not possible in cells 1 and 2). Since all of the probability in sources 1, ..., k-1 can

be shipped to sinks 1, ,..., k - 2 without satisfying one of those sinks (otherwise the left difficulty could not occur in cell k), necessarily

$$\sum_{i=1}^{k-2} q_i - \sum_{i=1}^{k-1} p_i > 0.$$

But this inequality is in the opposite sense of one of the left constraints, so a left difficulty cannot occur in cell k. Suppose instead that there is a right difficulty. A right difficulty occurs for the first time in cell k only if there is more probability in sources 1, ..., k than is required to satisfy sinks 1, ..., k + 1, so

$$\sum_{i=1}^{k+1} q_i < \sum_{i=1}^k p_i.$$

Since (p_i) and (q_i) are both constrained to be probability distributions, it follows that

$$\sum_{i=k+2}^{N} q_i - \sum_{i=k+1}^{N} p_i > 0.$$

But this contradicts one of the right constraints, so right difficulties cannot occur either.

Since neither right nor left difficulties can occur, LB will discover a feasible set of joint probabilities u_{ij} . This completes the proof.

Obviously there is a symmetrically defined "right-biased method" that will discover a possibly different set of feasible joint probabilities. In fact there are many such methods and many feasible sets of joint probabilities. Formulating the searcher's linear program without reference to these joint probabilities has the advantage of eliminating many alternate optima, in addition to the computational savings achieved by eliminating variables. The revised formulation, with dual variables shown in braces, is program LP:

$$\max \min ze_{g_{0}}$$
subject to $g_{0} - g(j, 1) \leq 0$; $j \in E_{0} \{q(j, 1)\}$

$$g(j,t) - \sum_{i=1}^{N} p(i,t)A(i,j,t) - g(k,t+1) \leq 0$$
 ; $j \in C, 1 \leq t < T, k \in E(j,t) \{v(j,k,t+1)\}$

$$g(j,T) - \sum_{i=1}^{N} p(i,T)A(i,j,T) \leq 0$$
 ; $j \in C \{q(j,T)\}$

$$\sum_{i \in S_{0}} p(i,1) = 1$$
 ; $\{h_{1}\}$

$$\sum_{i \in S_{0}}^{k} p(i,t+1) - \sum_{i=1}^{N} p(i,t) \leq 0$$
 ; $1 \leq k < N, 1 \leq t < T \{l(k,t)\}$

$$\sum_{i=k+1}^{N} p(i,t+1) - \sum_{i=k}^{N} p(i,t) \leq 0$$
 ; $1 \leq k < N, 1 \leq t < T \{r(k,t)\}$

$$\sum_{i=k+1}^{N} p(i,t) = 1$$
 ; $1 < t \leq T \{h_{t}\}$

It has been established so far that the value, v, of the CSEG is at least g_0 . The possibility still remains that $v > g_0$. To establish $v = g_0$, the dual of LP will be shown to be a Linear Program whose objective function is an upper bound on the game value. Consideration of the dual will also provide interpretations of the dual variables in LP; the notation used above anticipates that q(j,1) can be interpreted as the probability described earlier, for example, but that fact has yet to be established formally.

The dual of LP involves the sums $\sum_{k=i}^{N} l(k,t) \equiv L(i,t)$ and $\sum_{k=1}^{i} r(k,t) \equiv R(i,t)$. For compactness we will write $L(\bullet,\bullet)$ and $R(\bullet,\bullet)$ below, even though the sums are actually meant, and we will also use the convention

that L(0,t) = L(1,t) and R(N+1,t) = R(N,t). Note that, since $l(\bullet,\bullet)$ and $r(\bullet,\bullet)$ are nonnegative, $L(\bullet,t)$ and $R(\bullet,t)$ are nonincreasing and nondecreasing cell functions, respectively, for $1 \le t < T$. Finally, the set $E^*(i,t)$ consists of those cells from which the evader at time t-1 can transition to cell i at time t. The dual of LP is DLP:

minimize
$$\sum_{t=1}^{T} h_t$$

N

subject to $h_1 - \sum_{j=1}^N A(i, j, 1) \sum_{k \in E(j, 1)} v(j, k, 2) - L(i - 1, 1) - R(i + 1, 1) \ge 0$

$$; i \in S_0 \qquad \{p(i,1)\}$$

$$h_t - \sum_{j=1}^{N} A(i,j,t) \sum_{k \in E(j,t)} v(j,k,t+1) + L(i,t-1) + R(i,t-1) - L(i-1,t) - R(i+1,t) \ge 0$$

$$; i \in C, 1 \le t \le T \qquad \{p(i,t)\}$$

$$-\sum_{j=1}^{N} A(i,j,T)q(j,T) + L(i,T-1) + R(i,T-1) \ge 0 \qquad ; i \in C \qquad \{p(i,T)\}$$

$$\sum_{j \in E(i,t)} v(i,j,t+1) - \sum_{k \in E^*(i,t)} v(k,i,t) = 0 \qquad ; i \in C, 1 \le t \le T \qquad \{g(i,t)\}$$

$$q(k,T) - \sum_{j \in E^*(k,T)} v(j,k,T) = 0 \qquad ; k \in C \qquad \{g(k,T)\}$$

$$\sum_{k \in E(j,1)} v(j,k,2) - q(j,1) = 0 \qquad ; j \in C \qquad \{g(j,1)\}$$

$$\sum_{i \in E_0} q(i, 1) = 1 \qquad ; \qquad \{g_0\}$$

 $v(i, j, t) \ge 0; \quad l(i, t) \ge 0; \quad r(i, t) \ge 0; \quad q(i, 1) \ge 0; \quad q(j, T) \ge 0$

The last four sets of constraints in DLP have the effect of requiring that $q(\bullet, \bullet)$ be a feasible marginal distribution for the evader, with $v(\bullet, \bullet, \bullet)$ being the joint occupancy probabilities. The first three sets of constraints can be simplified somewhat by defining $y(i, t) = \sum_{j=1}^{N} A(i, j, t) \sum_{k \in E(j,t)} v(j, k, t+1)$, so that y(i,t) is the average payoff to the searcher at time t if he occupies cell i at that time, and also $L(\bullet, T) = R(\bullet, T) = 0$. In that case the first three sets of constraints can be summarized as

$$h_1 - y(i,1) - L(i-1,1) - R(i+1,1) \ge 0$$
; $i \in S_0$ (2)

$$h_t - y(i,t) + L(i,t+1) + R(i,t-1) - L(i-1,t) - R(i+1,t) \ge 0 \quad ; \ i \in C, 1 \le t \le T \quad (3)$$

The question now is, "Do (2) and (3) guarantee that the accumulated payoff is at most $\sum_{t=1}^{T} h_t$ for any feasible searcher path?" Theorem 2 answers this question in the affirmative.

Theorem 2: Suppose that (2) and (3) hold, with $L(\bullet,t)$ and $R(\bullet,t)$ being nonincreasing and nondecreasing functions, respectively, on $\{1, ..., N\}$, and $L(\bullet,T) = R(\bullet,T) = 0$. Let $x_1, ..., x_T$ be any sequence of integers such that $x_1 \in S_0$, $1 \le x_t \le N$ for $1 \le t \le T$, and $|x_t - x_{t-1}| \le 1$ for t > 1. Then $\sum_{t=1}^{N} y(x_t,t) \le \sum_{t=1}^{N} h_t$.

Proof: Substitute x_t for i in the tth inequality of (2)–(3), and sum all T inequalities. The result is

$$\sum_{t=1}^{T} h_t - \sum_{t=1}^{T} y(x_t, t) + \sum_{t=2}^{T} \left[L(x_t, t-1) - L(x_{t-1} - 1, t-1) \right] + \left[R(x_t, t-1) - R(x_{t-1} + 1, t-1) \right] \ge 0$$
(4)

Since $L(\bullet, t-1)$ is nonincreasing and since $x_t \ge x_t-1$, $L(x_t, t-1) - L(x_{t-1}-1, t-1) \le 0$ for t = 2, ..., T. Similarly $R(x_t, t-1) - R(x_{t-1}+1, t-1) \le 0$. Therefore the third sum in (4) is nonpositive, and the theorem follows directly.

Theorem 2 implies that the optimized g_0 from LP is the value of the CSEG, as well as providing probabilistic interpretations for the dual variables q(i, 1), v(j,k,t+1), and q(i, T). Thus the value of the game and both optimal strategies can be obtained from LP.

Bothwell (1990) reports on some experiments in using LP as above (as well as other methods) to solve a one-dimensional CSEG where A(i, j, t) indicates whether i = j, so that the payoff is "total number of coincidences," with $S_0 = \{1\}$ and $E_0 = \{N\}$. He discovered that the new formulation permitted solutions in about one fourth of the time of the Eagle-Washburn method, and was thus able to solve games up to N = 30. His Figures 1-6 describe the solution for N = 20 and T = 31. The searcher's strategy $p(\bullet, \bullet)$ is shown digitally in Figure 1 and graphically in Figure 2. Figure 3 is a blowup for $t \ge 21$, showing that $p(\bullet, 31)$ is finally uniform, that p(1,t) goes through a maximum, and that p(20,t)goes through a minimum. The latter two features were unanticipated, but seem to be regular features of the solution for large N. Basically the searcher "rushes" from cell 1 to cell 20, except that he has a small probability of reversing his direction after time 10. The cumulative effect of all the small probabilities is to make $p(\bullet, t)$ uniform for t = 31.

Figures 4-6 show the evader's marginal probabilities $q(\bullet, \bullet)$. Basically the evader stays in cell 20, except that there is at all times (even t = 1) a small probability of making a break for the other side; one is reminded of Auger's

											CEI	.LS									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1	1100	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	I 0	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	I 0	0	0	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6	1 0	0	0	0	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0
	8	•	0	0	0	0	0		1000		0	0	0	0	0	0	0	0	0	0	0
	9		0	0	0	0	0	0		1000		0	0	0	0	0	0	0	0	0	0
	0		0	0	0	0	0	0	0	-	1000	_	0	0	0	0	0	0	0	0	0
	1		0	0	0	0	0	0	0		500		0	0	0	0	0	0	0	0	0
	2	• -	0	0	0	0	0	0	0	22			477	0	0	0	0	0	0	0	0
	.3		0	0	0 0	0 0	0	0 10	10 9	22 13	0 13	13	477	477	0	0 0	0	0	0	0	0
т 1			0	0	0	0	10	9	13	13	19	13	19		441	-	0	0	0	0	0 1
I 1			0	0	0	10	9	13	13	15	17	19	22	42	_	415	-	0	0	0	0 1
M 1			0	0	10	5	15	15	15	17	19	22	24	28	33		382	-	0	0	0 1
E 1			0	10	5	15	15	15	17	19	22	24	28	33	33	41		342		0	0
	9	•	10	5	15	15	15	17	19	22	24	28	33	33	41	41	52		290	290	0
2	0	0	15	15	15	15	17	19	22	24	28	33	33	41	41	52	52	84	55	220	220
2	1	15	15	15	15	17	19	22	24	28	33	33	41	41	52	52	66	73	147	147	147
2	2	19	19	19	19	19	22	24	28	33	33	41	41	52	52	66	73	110	110	110	110
2	3	24	24	24	24	24	24	28	33	33	41	41	52	52	66	73	88	88	88	88	88 I
2	4	28	28	28	28	28	28	33	33	41	41	52	52	66	73	73	73	73	73	73	73
2	5	34	34	34	34	34	34	34	41	41	52	52	64	64	64	64	64	64	64	64	64
2	6	39	39	39	39	39	39	41	41	52	52	58	58	58	58	58	58	58	58	58	58 I
2	7	45	45	45	45	45	45	45	52	52	58	58	52	52	52	52	52	52	52	52	52
2	8	53	53	53	53	53	53	53	53	58	58	46	46	46	46	46	46	46	46	46	46
2	9	56	56	56	56	56	56	56	56	56	45	45	45	45	45	45	45	45	45	45	45
3	0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
3	1	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50

Figure 2. Searcher Strategy

Figure 3. Searcher Strategy—Final Time Periods

										CEL	.LS									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	ο	ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1000
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	964
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	36	928
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	36	36	892 I
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	36	36	36	856
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	36	36	36	37	819
7	0	0	0	0	0	0	0	0	0	0	0	0	0	36	36	36	36	37	37	782
8	0	0	0	0	0	0	0	0	0	0	0	0	36	36	36	36	37	37	39	743
9	0	0	0	0	0	0	0	0	0	0	0	36	36	36	36	37	37	39	39	704 I
10	0	0	0	0	0	0	0	0	0	0	36	36	36	36	37	37	39	39	41	663
11	0	0	0	0	0	0	0	0	0	36	36	36	36	37	37	39	39	41		622
12	0	0	0	0	0	0	0	0	36	36	36	36	37	37	39	39	41	41		578
13	0	0	0	0	0	0	0	36	36	36	36	37	37	39	39	41	41	44		535 I
14	0	0	0	0	0	0	36	36	36	36	37	37	39	39	41	41	44	44		485
T 15	0	0	0	0	0	36	36	36	36	37	37	39	39	41	41	44	44	49		436
I 16	0	0	0	0	36	36	36	36	37	37	39	39	41	41	44	44	49	49 E(382
M 17	0	0	0	36	36	36	36	37	37	39	39	41	41	44	44	49	49 E4	54		329
E 18	0	0	36	36 7 (36	36	37	37	39	39	41	41 44	44	44	49	49	54	54		208
19 20	0	36 36	36 36	36	36	37	37	39 39	39 41	41	41 44	44 44	44 49	49 49	49 54	54 54	54	60		208
			20 48	36 37	37 37	37 39	39 39	59 41	41	41 44	44	44	49	54	54	54 60	60 60	60 69	69	69
22	_	4 0	40 54	54	39	39	41	41	44	44	49	49	54	54	60	60	52	52	52	52
23		59	59	59	59	41	41	44	44	49	49	47 54	54	60	60	42	42	42	42	42
24		63	63	63	63	63	44	44	49	49	54	54	60	60	35	35	35	35	35	35 1
25		66	66	66	66	66	66	49	49	54	54	37	37	37	37	37	37	37	37	37
26		78	78	78	78	78	49	49	39	39	36	36	36	36	36	36	36	36	36	36
27	68	68	68	68	68	68	68	45	45	39	39	40	40	40	40	40	40	40	40	40
28 I	59	59	59	59	59	59	59	59	45	45	44	44	44	44	44	44	44	44	44	44
29	53	53	53	53	53	53	53	53	53	48	48	48	48	48	48	48	48	48	48	48 I
30	47	47	47	47	47	47	47	47	47	47	53	53	53	53	53	53	53	53	53	53
31	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50 I
-																				

Figure 4. Evader Marginal Probabilities (×1000) for 20-Cell CSEG

Figure 5. Evader Strategy

Figure 6. Evader Strategy—Final Time Periods

(1991) "Wait-and-run" strategies. By time 31 the evader's position, like the searcher's, is uniform over all 20 cells. It follows (see Eagle and Washburn) that the game where T > 31 starts the same way as when T = 31, but that it is optimal for each player to remain stationary for $31 \le t \le T$.

3. GENERALIZED PAYOFF

In this section it will be shown that the payoff in a CSEG can be generalized to $\sum_{t=1}^{T} A(x_{t-1}, x_t, y_{t-1}, y_t, t)$, with x_0 and y_0 specified. Solution of such games will require retention of the joint occupancy probabilities, so the contribution of this section is toward modeling flexibility, rather than computational efficiency.

Let $S_0 = \{x_0\}$, $E_0 = \{y_0\}$, and let $S(\bullet, \bullet)$ and $E(\bullet, \bullet)$ be as defined in Section 1 except that $S(x_0, 0)$ and $E(y_0, 0)$ are now (rather than S_0 and E_0) the sets of cells feasible for searcher and evader at Time 1. S_0 and E_0 are now the (singleton) sets of cells feasible at time 0. For $t \ge 1$ let S_t be the set of cells feasible for the searcher at time t. Formally, $S_t = \{j: \text{ there exists } i \text{ in } S_{t-1} \text{ such that } j \text{ is in}$ $S(i, t-1)\}$. Define E_t similarly. Also, for $t \ge 1$ and $j \in S_t$, let $S^*(j, t)$ be the set of cells from which j is feasible, formally $S^*(j, t) = \{i: j \in S(i, t-1)\}$, and define $E^*(\bullet, \bullet)$ similarly. Finally, let $u(\bullet, \bullet, \bullet)$ be as defined as in Section 1, so that

$$f(m, n, t) = \sum_{\substack{i \in S_t \\ j \in S(i, t-1)}} A(i, j, m, n, t) u(i, j, t); \quad 1 \le t \le T$$
(5)

is the penalty at time t to the evader if he occupies cell m at time t-1 and cell n at time t, and $\sum_{t=1}^{T} f(y_{t-1}, y_t, t)$ is the total expected penalty, conditioned on the evader's track.

Consider first the evader's problem of minimizing the total penalty when $u(\bullet, \bullet, \bullet)$ is known. A dynamic programming recursion is still feasible. Let h(m,t) be the minimum total penalty over periods t, ..., T if the evader occupies cell m at time t-1. Then h(m,t) satisfies the recursion

$$h(m,t) = \min_{n \in E(m,t-1)} \{ f(m,n,t) + h(n,t+1) \}; \quad 1 \le t \le T, m \in E_{t-1}$$
(6)

with $h(\bullet, T+1) = 0$. The minimized total penalty over all T periods is then $h(y_0, 1)$, which quantity the searcher wants to maximize. Since (6) can be written as linear constraints, maximizing $h(y_0, 1)$ is a linear program. The program, with dual variables named in braces as usual, is LP1:

 $maximize h(y_0, 1)$

subject to

$$-f(m,n,t) - h(n,t+1) + h(m,t) \le 0 \quad ; 1 \le t \le T, m \in E_{t-1}, n \in E(m,t-1) \quad \{v(m,n,t)\}$$

$$\sum_{j \in S_1} u(x_0, j, 1) = 1 \qquad ; \qquad \{g(x_0, 1)\}$$

$$\begin{aligned} &-\sum_{j\in S^*(i,t)} u(j,i,t) + \sum_{k\in S(i,t)} u(i,k,t+1) = 0 \ ; 1 \leq t < T \, , i \in S_t \\ & u(i,j,t) \geq 0 \qquad \qquad ; 1 \leq t \leq T \, , i \in S_{t-1}, j \in S(i,t-1). \end{aligned}$$

In LP1 f(m, n, t) has been written for compactness, even though the expression on the right-hand side of (5) is meant, and it should be understood that the term h(n, t+1) is missing when t = T. The second and third sets of constraints are the feasibility constraints of Eagle and Washburn; as long as $u(\bullet, \bullet, \bullet)$ satisfies those constraints, there exists a feasible mixed strategy for the searcher with $u(\bullet, \bullet, \bullet)$ as the joint occupancy probabilities. Thus any feasible solution to LP1 corresponds to a lower bound h (y₀,1) on the value of the CSEG, and consequently the same thing can be said of the maximized value.

LP1 and its dual DLP1 possess a pleasing symmetry that was absent in Section 2. DLP1 is (the g(j,t+1) term is missing when t = T)

minimize $g(x_0, 1)$

subject to

- $-\sum_{\substack{m \in E_{t-1} \\ n \in E(m,t-1)}} A(i,j,m,n,t) \upsilon(m,n,t) g(j,t+1) + g(i,t) \ge 0$
 - $; 1 \le t \le T, i \in S_{t-1}, j \in S(i, t-1) \{u(i, j, t)\}$

$$\sum_{n \in E_1} v(y_0, n, 1) = 1 \qquad \{h(y_0, 1)\}$$

$$-\sum_{n \in E^*(m,t)} v(n,m,t) + \sum_{k \in E(m,t)} v(m,k,t+1) = 0 \qquad ; 1 \le t < T, m \in E_t \qquad \{h(m,t+1)\}$$

 $v(m, n, t) \ge 0$; $1 \le t \le T, m \in E_{t-1}, n \in E(m, t-1).$

Any function $v(\bullet, \bullet, \bullet)$ that meets the second and third sets of constraints of DLP1 can be interpreted as the joint occupancy probabilities of a feasible mixed strategy for the evader. That being the case, the first set of constraints assures that a searcher in cell *i* at time *t*-1 cannot obtain a payoff larger than g(i,t) over periods *t*, ..., *T*. In particular, $g(x_0,1)$ is an upper bound on the cumulative payoff over all *T* periods. But the optimized values of $g(x_0,1)$ and $h(y_0,1)$ must be equal because LP1 and DLP1 are duals, so either number is the value of the CSEG. Furthermore the evader's optimal occupancy

probabilities can be obtained as the dual variables associated with the first set of constraints in LP1; it is actually not necessary to solve DLP1.

Example: The revised one-dimensional CSEG

In the standard one-dimensional CSEG described earlier, it is possible that the two tracks x_1 , ..., x_T and y_1 , ..., y_T may cross each other without ever being exactly coincident, in which case the searcher's score will be 0 because the objective function simply counts coincidences. To guard against this possibility, the searcher's leading edge as he moves from 1 to N is spread into two approximately equal parts, thus making a barrier so wide that the evader cannot "jump over it" (see Figure 2). This annoying artifact can be eliminated by redefining the payoff so that the searcher scores a point whenever the two tracks cross, even if they are never exactly coincident. Specifically, for $1 \le ij \le N$ let

$$A(i,j,m,n,t) = \begin{cases} 1 & \text{if } j = n \\ 1 & \text{if } i = n \text{ and } j = m \\ \text{otherwise } 0 \end{cases}$$
(7)

Figure 7 shows a GAMS program (Brooke, Kendrick, and Meeraus, 1988) to solve a 10 cell CSEG with payoff (7) where the initial moves of searcher and evader are from cells 4 to 5 and 7 to 6, respectively. Figure 8 shows the associated output. The value of the CSEG is 1.2269 (scaled to 122.69 in Figure 8), to be compared with .8541 in the "standard" game where A(i,j,m,n,t)

******ONE DIMENSIONAL CROSSING GAME*******

01/22/91 16:24:59 PAGE GAMS 2.19 IBM CMS

```
3 OPTIONS SOLPRINT=OFF.ITERLIM=5000.LIMROW=0.LIMCOL=0
   4 SET
        I /CI+CIO/
  5
        T /TI#TIO/
  6
   7
         E(1.1.T) HOLDS FEASIBLE TRANSITIONS FOR EVADER
        S(I.T) HOLDS FEASIBLE CELLS FOR SEARCHER
  8
        SS(1,1,T) HOLDS FEASIBLE TRANSITIONS FOR SEARCHER
  9
  10 ALIAS (1.J.K):
 11 ---- SEARCMER STARTS BY MOVING FROM HALF-1 TO HALF
  12 ### EVADER STARTS BY MOVING FROM HALF+2 TO HALF+1
 13 PARAMETER
 14
        HALF:
  15 HALF=FLCOR(.5+CARD(I));
 16 E(I.J.T)=YESS(ABS(ORD(I)-ORD(J)) LE I AND ORD(I)+ORD(T) GT HALF+2
  17
       AND CRD(J)+CRD(T) GT HALF+I);
  18 E(I,J,T)$(ORD(I) GE HALF+ORS(T))=NO;
 19 E(I,J."T1")S(ORD(I) EQ HALF+2 AND CRD(J) EQ HALF+1)=YES:
 20 S(I.T)=YESS(HALF+ORD(T) GT ORD(I));
 21 G(I,T)S(HALF GE ORD(I)+ORD(T))=NO:
 22 SS(1.J.T+1)SS(I.T)=YESS(ABS(CRD(I)-ORD(J)) LE I):
  25 SS(I.J."T1")=YESS(ORD(J) EQ HALF AND ORD(I) EO HALF-1):
  24 VARIABLES
 25
        HCL73
 26
        U(I,J,T)
 27
       Ξ:
 28 POSITIVE VARIABLE U:
 29 U.FX(I,J."T1")=100S(CRS(I) EQ HALF-1 AND ORD(J) EQ MALF):
  30 EQUATIONS
        NCET
 31
        BAL(:.T)
 32
 23
       CPT(1+J+T):
 34 NDET.. Z=E=CUM(IS(ORD(I) EQ HALF+2).H(I."TI"));
 35 BAL(I,T+1)SS(I,T).. SUM(USSS(I,J,T+1).U(I,J,T+1))
  26
                -SUM(KSSS(K,1,T),U(K,1,T))=E=0:
 J7 OPT(I.J.T)S(E(I.J,T))..H(I.T)-H(J,T+1)
         -SUM(KSSS(K.J.T).U(K.J.T))
 38
 39
         -U(J.I.T)SSS(J.I.T)S(ORD(J) NE ORD(I))=L=0;
 40 MODEL LINESEARCH /ALL/:
 41 SOLVE LINESEARCH USING LP MAXIMIZING Z:
 42 OPTION DECIMALS=4:
 43 DISPLAY H.L:
 44 PARAMETER
 45
        P(I+T) MARGINALS
 46
        O(J.T) EVADER MARGINALS
 47
         G(J.T) ROUTE TOTALS SEEN BY PURSUER:
 48 P(I.T):S(I.T)=SUM(K:SS(K,I.T),U.L(K,I.T));
 49 Q(J.T)=100=SUM(ISE(I.J.T).OPT.M(I.J.T));
 50 G(J.T)=100+BAL.M(J.T);
 51 DICPLAY P.G.G:
MODEL STATISTICS
ELCONS OF EQUATIONS 5 SINGLE FORATIONS 253
BLOCKS OF VARIABLES I SINGLE VARIABLES 254
```

Figure 7. One-Dimensional Crossing Game

EXECUTING

	43 VARIA	SLE H.L								
	Τ1	Τ2	Т3	Τ4	т5	T6	Τ7	T8	т9	T10
C1							18.1478	16.4247	12.0387	7.2676
c2						18.6177	18.1478	16.4247	13.7618	7.4895
C 3					19.0876	19.4009	19.0876	16.4247	13.7618	8.7688
C4				20.8890	21.9855	21.7506	19.0876	17.7562	13.7618	8.7688
C5			22.6904	23.2387	24.4135	21.7506	21.7506	18.7548	16.2583	8.7688
C6		122.6904	24.4918	25.7450	24.4135	25.7450	23.7478	25.7478	18.1307	7.4462
C7	122.6904		122.6904	31.0709	29.7394	28.7408	31.2373	27.4925	20.3429	7.4462
CS				122.6904	33.7338	38.7268	36.8544	37.9605	25.0639	17.6177
C9					122.6904	46.2163	55.5782	37.9605	25.0639	13.2132
C10					122.0704	122.6904	73,1959	58.9366	25.2353	13.2132
010						112.0904	/ 311737	38.7566	53.2533	13.2132
	51 PARAM	IETER P	MARGI	NALS						
				- /						
	Τ1	T2	Τ3	Τ4	T5	Τ6	Τ7	T8	Т9	T10
~										
C1						0.4699	1.7231	4.3860	4.7711	7.2676
C2					0.4699	1.2531	2.6629	2.6629	6.2723	7.4895
C3				1.8014	1.2531	2.6629	2.6629	3.9044	4.9930	8.7088
C4			1.8014	1.2531	2.6629	2.6629	3.9944	4.9930	7.4895	8.7.88
C5	100.0000	1.8014	1.2531	1.3315	2.6629	3.9944	4.9930	7.4895	9.3619	8.7688
C6		98.1986	5.3259	2.6629	3.9944	4.9930	7.4895	9.3619	12.8967	7.4462
C7			91.6196	3.9944	4.9930	7.4895	9.3619	17.6177	12.8967	7.4462
C3 C9				88.9566	7.4895	9.3619	17.6177	12.8967	7.4462	17.6177
C10					76.4741	17.6177	35.2353	12.8°67 23.7013	11.8506	13.2132
¢10						69.6946	14.2593	23.7013	12.0111	13.2132
	51 PARAM	ETER O	EVADE	R MARGINALS						
	51 PARAM	ETER Q	EVADE	R MARGINALS						
					15	Té	77	ТЯ	тэ	τ10
	51 PARAM Tl	ETER Q T2	EVADE T3	R MARGINALS	τ5	T6	τ7	T8	Т9	τ10
C1					Ť5					
C1						9.0836	16.3505	20.3073	20.3073	20.3073
C2				τ4	9.0836	9.0836 7.2669	16.3505 9.0836	20.3073	20.3073	20.3073
C2 C3			τs	9.0836	9.0836 7.2669	9.0836 7.2669 9.0836	16.3505 9.0836 8.5858	20.3073 13.7125 9.6112	20.3073 20.3073 12.3057	20.3073 20.3073 20.3073
C2 C3 C4		τ2	9. 03 36	74 9.0836 7.2669	9.0836 7.2669 9.0836	9.0836 7.2669 9.0836 8.5858	16.3505 9.0836 8.5858 9.6112	20.3073 13.7125 9.6112 9.2893	20.3073 20.3073 12.3057 9.8926	20.3073 20.3073 20.3073 6.3029
C2 C3 C4 C5	τı	T2 9.0836	T3 9.0836 7.2669	74 9.0836 7.2669 9.0836	9.0836 9.0836 8.5858	9.0836 7.2669 9.0836 8.5858 9.6112	16.3505 9.0836 8.5858 9.6112 9.2893	20.3073 13.7125 9.6112 9.2893 9.8926	20.2073 20.2073 12.3057 9.8926 10.7149	20.2073 20.2073 20.2073 6.3029 6.2029
C2 C3 C4 C5 C6		T2 9.0836 7.2669	T3 9.0836 7.2669 9.0836	74 9.0836 7.2669 9.0836 8.5858	9.0836 7.2669 9.0836 8.5858 9.6112	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149	20.3073 20.3073 12.3057 9.8926 10.7149 5.0423	20.2073 20.2073 20.2073 6.3029 6.2029 6.2029
C2 C3 C4 C5 C6 C7	τı	T2 9.0836	T3 9.0836 7.2669 9.0836 8.5858	74 9.0836 7.2669 9.0836 8.5858 9.6112	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846	20.3073 20.3073 12.3057 9.8926 10.7149 5.0423 5.0423	20.3073 20.3073 20.3073 6.3029 6.3029 6.2029 5.0423
C2 C3 C4 C5 C6 C7 C8	τı	T2 9.0836 7.2669	T3 9.0836 7.2669 9.0836	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423	20.3073 20.3073 12.3057 9.8926 10.7149 5.0423 5.0423 6.3029	20.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9	τı	T2 9.0836 7.2669	T3 9.0836 7.2669 9.0836 8.5858	74 9.0836 7.2669 9.0836 8.5858 9.6112	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8	τı	T2 9.0836 7.2669	T3 9.0836 7.2669 9.0836 8.5858	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423	20.3073 20.3073 12.3057 9.8926 10.7149 5.0423 5.0423 6.3029	20.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9	τı	T2 9.0836 7.2669	T3 9.0836 7.2669 9.0836 8.5858	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9	τı	T2 9.0836 7.2669 83.6495	T3 9.0836 7.2669 9.0836 8.5858 65.9801	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423	20.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1	T2 9.0836 7.2669 83.6495	T3 9.0836 7.2669 9.0836 8.5858 65.9801	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1	T2 9.0836 7.2669 83.6495	T3 9.0836 7.2669 9.0836 8.5858 65.9801	74 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE	T4 9.0836 7.2669 9.0936 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 89 PURSUER	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.2029 6.3029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE	T4 9.0836 7.2669 9.0936 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 89 PURSUER	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.2029 6.3029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423 5.0423	20.2073 20.2072 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE	T4 9.0836 7.2669 9.0936 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.2029 6.3029	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029	20.2073 20.2073 12.3057 9.8926 10.7149 5.9423 5.0423 5.0423 5.0423 5.0423 5.0423	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725	16.3505 9.0836 8.5858 9.6112 9.28°3 9.8°26 10.7149 13.8664 6.3029 6.3029 T8	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9	20.2073 20.2073 12.3057 9.8926 10.7149 5.9423 5.9423 5.9423 5.0423 5.0423 5.0423 5.0423 5.0423	20.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5 122.6904	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.3029 6.3029 T8 60.9220 60.9220	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 5.0423 6.3029 T9	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G T3	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5 122.6904 95.4397	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5394	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.3029 6.3029 6.3029 T8 60.9220 60.9220 54.3272	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 2.0273 20.2073 20.2073	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3	T1 100.0000 51 PARAM	T2 9.0836 7.2669 83.6495 ETER G T3	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5 122.6904 95.4397	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5394	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.3029 6.3029 6.3029 T8 60.9220 60.9220 54.3272	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 6.2029 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 20.2073 20.2073 20.2073	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C2 C3 C4	T1 100.0000 51 Param T2	T2 9.0836 7.2669 83.6495 ETER G T3 122.6904	T3 9.0936 7.2669 9.0836 8.5858 65.9801 ROUTE T4 122.6904 104.5233	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5 122.6904 95.4397 91.8062	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.3561 84.5394 79.0892	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056 62.9131	16.3505 9.0836 8.5858 9.6112 9.2833 9.8926 10.7149 13.8664 6.3029 6.3029 T8 60.9220 60.9220 54.3272 50.2259	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147 32.6130	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 7.0423 7.0423 7.0423 2.0423 7.0423	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C9 C10 C1 C2 C3 C3 C4 C5	T1 100.0000 51 Param T2	T2 9.0836 7.2669 83.6495 ETER G T3 122.6904 113.6068	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4 122.6904 104.5233 99.0731	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 47.0797 TOTALS SEEN T5 122.6904 95.4397 91.8062 88.1728	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5294 79.0892 71.4989	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056 62.9131 59.8370	16.3505 9.0836 8.5858 9.6112 9.2833 9.8926 10.7149 13.8664 6.3029 6.3029 T8 60.9220 54.3272 50.2259 41.9023	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147 32.6130 20.1999	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 7.0423	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C9 C10 C1 C2 C3 C4 C3 C4 C5 C6	T1 100.0000 51 Param T2	T2 9.0836 7.2669 83.6495 ETER G T3 122.6904 113.6068	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4 122.6904 104.5233 99.0731 97.2564	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN T5 122.6904 95.4397 91.8062 88.1728 80.0847	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5394 79.0892 71.4989 69.4482	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056 62.9131 59.8370 51.1915	16.3505 9.0836 8.5858 9.6112 9.2833 9.8926 10.7149 13.8664 6.2029 6.3029 T8 60.9220 60.9220 54.3272 50.2259 41.9023 40.0924	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147 22.6130 20.1999 17.0178	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 7.0423 7.0423 2.0423 7.042	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C10 C1 C2 C3 C4 C5 C6 C7	T1 100.0000 51 Param T2	T2 9.0836 7.2669 83.6495 ETER G T3 122.6904 113.6068	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4 122.6904 104.5233 99.0731 97.2564	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN T5 122.6904 95.4397 91.8062 88.1728 80.0847 79.0594	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5394 79.0892 71.4989 69.4482 60.4808	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 70.0056 62.9131 59.8370 51.1915 49.9850	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.2029 6.3029 6.3029 T8 60.9220 60.9220 54.3272 50.2259 41.9023 40.0924 27.7228	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147 32.6130 20.1999 17.0178 11.3452	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 6.2029 5.0423 5.0423 5.0423 5.0423 7.042	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423
C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 C8	T1 100.0000 51 Param T2	T2 9.0836 7.2669 83.6495 ETER G T3 122.6904 113.6068	T3 9.0836 7.2669 9.0836 8.5858 65.9801 ROUTE T4 122.6904 104.5233 99.0731 97.2564	T4 9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 67.0797 TOTALS SEEN T5 122.6904 95.4397 91.8062 88.1728 80.0847 79.0594	9.0836 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 26.4722 8Y PURSUER T6 93.6229 86.2561 84.5394 79.0892 71.4989 69.4482 60.4808 59.8775	9.0826 7.2669 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 12.6058 T7 77.2725 77.2725 70.0056 62.9131 59.8370 51.1915 49.9850 28.6477	16.3505 9.0836 8.5858 9.6112 9.2893 9.8926 10.7149 13.8664 6.2029 6.3029 T8 60.9220 54.3272 50.2259 41.9023 40.0924 27.7328 21.4299	20.3073 13.7125 9.6112 9.2893 9.8926 10.7149 10.0846 5.0423 5.0423 6.3029 T9 40.6147 40.6147 40.6147 32.6130 20.1999 17.0178 11.3452 11.2452	20.2073 20.2073 12.3057 9.8926 10.7149 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 5.0423 710 20.2073 20.2073 20.2073 20.2073 20.3073 6.3029 6.3029 6.3029 5.0423	23.2073 20.2073 20.2073 6.3029 6.2029 6.2029 5.0423 5.0423 5.0423

Figure 8. One-Dimensional Crossing Game

simply indicates whether j = n. The prohibition of scoreless crossovers is evidently a significant change in the rules of the game. Note that the leading edge of the searcher's marginals (*P*) is now only 1 cell wide for $1 \le t \le 6$.

The revised game differs qualitatively in an interesting way from the standard game. Let $v_N(T)$ and $v'_N(T)$ be the values of the standard and revised games (so $v_{10}(10) = .8541$ and $v'_{10}(10) = 1.2269$). $v_N(T)$ is ultimately linear in T with slope 1/N. For example $v_{10}(T) = 1.2269 + (T-10)/10$ for $T \ge 10$. The turnpike theorem of Eagle and Washburn makes this plausible; essentially either side can guarantee a slope of 1/N by remaining stationary in a randomly chosen cell. Stationarity has the same virtues in the revised game, but there is no evidence that $v'_N(T)$ is ultimately linear. For $T = (12, 14, 16, 18, 20), v'_{10}(T)$ is (1.4486, 1.7109, 2.000, 2.1396, 2.3540). The differences fluctuate about .2, but are never exactly equal to .2. It is possible, of course, that T = 20 is simply not large enough to observe the onset of linearity.

REFERENCES

Auger, John., "An Infiltration Game on k Arcs," Naval Research Logistics 38, 511-530 (1991).

Bothwell, Brian P., "An Iterative Linear Programming Approach to Solving large Cumulative Search-Evasion Games," Naval Postgraduate School Master's Thesis, March, 1990.

Brooke, A., D. Kendricks, and A. Meeraus, *GAMS a User's Guide*, The Scientific Press, CA, 1988.

Eagle, J., and A. Washburn, "Cumulative Search Evasion Games," Naval Research Logistics, 38, 495-510 (1991).

INITIAL DISTRIBUTION LIST

Library, (Code 52) Naval Postgraduate School Monterey, CA 93943-5000	2
Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
Office of Research Administration (Code 08) Naval Postgraduate School Monterey, CA 93943-5000	ł
Library (Code 55) Naval Postgraduate School Monterey, CA 93943-5000	1
Operations Research Center, Rm E40-164 Massachusetts Institute of Technology Attn: R. C. Larson and J. F. Shapiro Cambridge, MA 02139	1
Institute for Defense Analysis 1800 North Beauregard Alexandria, VA 22311	1
Code OR-Hania Naval Postgraduate School Monterey, CA 93943-5000	2
Code OR-Wa Naval Postgraduate School Monterey, CA 93943-5000	3
Code OR-Er Naval Postgraduate School Monterey, CA 93943-5000	L
COMSUBPAC1 Pearl Harbor Honolulu, HI 23521	L

COMSUBDEVRON TWELVE
Prof. Lyn C. Thomas
Dr. Anthony Ciervo
OEG Representative
Dr. Larry Stone
Dr. William H. Ruckle
Dr. Vic J. Baston

